

Surface Program at ChemMatCARS:

Science, Instrumentation and User Support

Binhua Lin

with

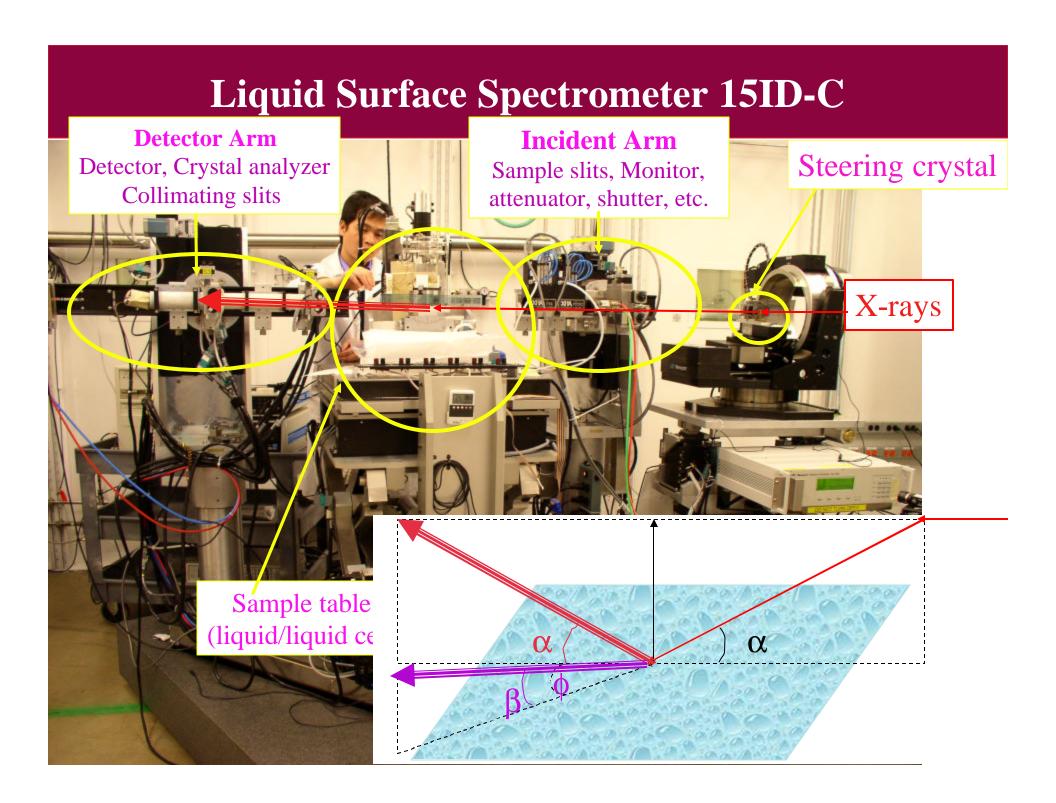
Mati Meron, Jeff Gebhardt, Tim Graber and Dave Schultz and CARS technical group (Harold Brewer, Mike Bolbat, Guy Macha and Jay VonOsinski)

Surface X-ray Scattering Studies of Liquid Surface/Interfacial Phenomena

OUTLINE

- Scientific Background
 - Liquid surface/interfacial systems
 - X-ray surface sensitive techniques
- Instrumentation-Liquid surface spectrometer
 - Design and Capability
 - User support infrastructure
- User Science Programs
 - User groups
 - Highlights of user experiments

Liquid Interfacial Systems

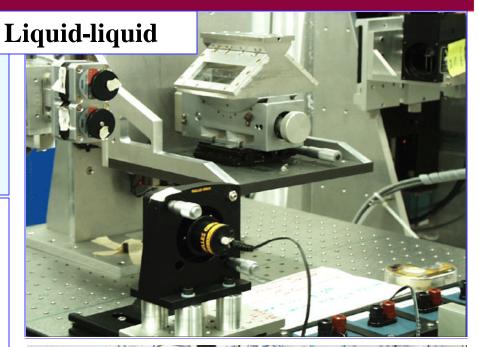

• Experimental Systems:

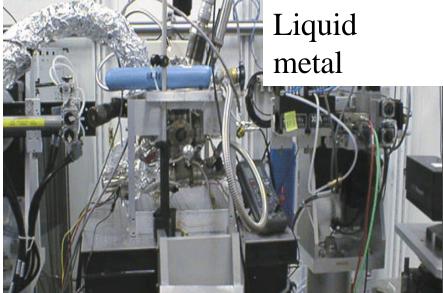
- Monolayers at air-liquid and liquid-liquid interfaces
- Liquid metal-X interfaces
- Liquid-liquid interfaces: aqueous-organic, aqueous-aqueous
- Surfaces of complex fluids: polymers, liquid crystals, lipids, etc.
- Solid-liquid and Soft-Solid interfaces (Dave Schultz leads)

Basic Scientific Issues:

- Characterization of surface/interfacial structure on the length scale of $\mbox{\normalfont\AA}$ $\mbox{\normalfont\mu m}.$
- Understanding the effect of surface/interface on the ordering, interactions, and dynamics of the molecules.
- Model two-dimensional systems

X-ray surface sensitive probes	Interfacial properties	Status @15IDC
Specular reflectivity	Electron density profile normal to surfaces	Working/ upgrading (V focus)
Grazing incident Bragg diffraction	Ordering (disorder) within interfacial plane	Working/ upgrading (CCD, analyzer, 2 nd detector arm)
Off-specular diffuse scattering	In-plane inhomogeneity of the interfaces	Working/ upgrading
Standing wave fluorescence spectroscopy	Depth profiles of metal particles in liquid/solid films	Working/ upgrading (Dave)
Combination of x-ray scattering with optical microscopy in situ (BAM&FM)	Complementary real space images and q-space info	Developing (with Prof. Ka Yee Lee)
Coherent static/dynamic x-ray scattering	Detailed interfacial structure and diffusion within or near interfaces	Developing (With Prof. Sunny Sinha)


Spectrometer Design--Main Challenges


Small vs. large samples

- Heavy load
- Large travel
- Precise motion
- •Designed and Developed with <u>in house</u> <u>experts</u>
 - -Based on the design of the liquid spectrometer at X19C (NSLS)

(Binhua Lin, Mati Meron, Mark Schlossman, Jeff Sundwall, Jim Viccaro)

- -Complex x-ray tracking geometry-beam propagation error analysis (Mati Meron)
- -Complex electronics—30 motors on the spectrometer (Jeff Gebhardt)

Liquid Surface Spectrometer @15IDC	Performance	
Energy Range	8keV-30keV	
Energy Accuracy (ΔΕ/Ε)	~10-4	
Specular Reflection @ E~20 keV		
1) q _z range	4.5Å ⁻¹ (1.4Å in real space)	
2) Δq_z (with slits)	10 ⁻³ Å ⁻¹	
3) Δq_z (with channel cut analyzer)	Under commissioning	
Grazing Incident Diffraction @ E~17.7keV		
1) q_{xy} range (for $\theta_{xy} = 90^{\circ}$)	12 Å ⁻¹	
2) $\Delta \theta_{xy}$ (with Soller slits)	0.08 deg	
3) $\Delta\theta_{xy}$ (with channel cut analyzer)	Under commissioning	
Off Specular Reflection @ E~17.7keV		
1) q _z range	2.5 Å ⁻¹ (α ~0.2°, β =16°)	
2) Δq_z (with slits)	10 ⁻⁶ Å ⁻¹	
3) Δq_z (with channel cut analyzer)	Under commissioning	
Sample table specification		
1) Load	250kg	
2) Travel (vertical direction)	400mm	
3) Precision	<± 2μm	

Infrastructure for User Support

- Laboratories, equipment, supplies:
 - Chemistry, electronics, vacuum facility, machine shop, setup space
- Technical support:
 - Experimental: Binhua, Mati, Jeff, Dave
 - User support software (SPEC, IDL, EPICS): Mati, Tim, Jeff, Dave
 - X-ray optics: Tim, Mati
 - Control, electronics: Tim, Jeff
 - Wet chemistry lab supplies, waste control: Binhua, Dave, David
 Cookson
 - Setup, mechanical, vacuum, emergency repair: Harold Brewer,
 Mike Bolbat, Guy Macha, Jay VonOsinski and Frank Westferro
 - Photo records: John Shick
 - Central commander (panic button): Jim Viccaro

User Groups

The Users

- Stuart A. Rice (U of Chicago)
 - Liquid Metal/Alloys
- Peter Pershan (Harvard)
 - Liquid Metal/Alloys
- Mark Schlossman (U of IL at Chicago)
 - Liquid/liquid interfaces
- Ian Gentle (Queensland, Australia)
 - Langmuir monolayers of porphyrin salts
- Sunil Sinha (UCSD) & Metin Tolan (Dortmund, Germany)
 - Supercooled water
- Ka Yee Lee (U of Chicago)
 - Lipid/cholesterol mixtures

To Be Users

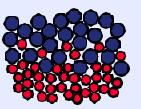
- Miriam Rafailovich (SUNY)
 - polymer melts and polymer nano-composites on the surface of water
- ChemMatCARS core group
 - Monolayers of metal nanospheres on the surface of water

Molecular structure at Nitrobenzene-Water interface

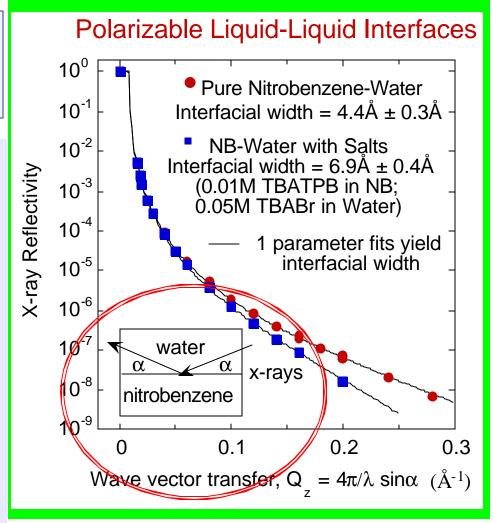
First structural measurements of polarizable liquid-liquid interfaces

Precursor experiments to investigate molecular scale effects in liquid-liquid electrochemistry

Address two issues:

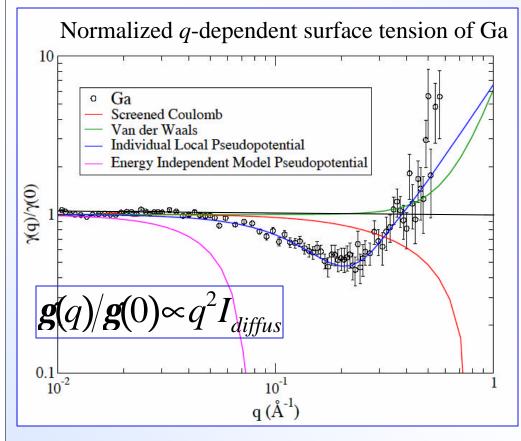

1. Interfacial width of pure interface due to

Capillary Waves

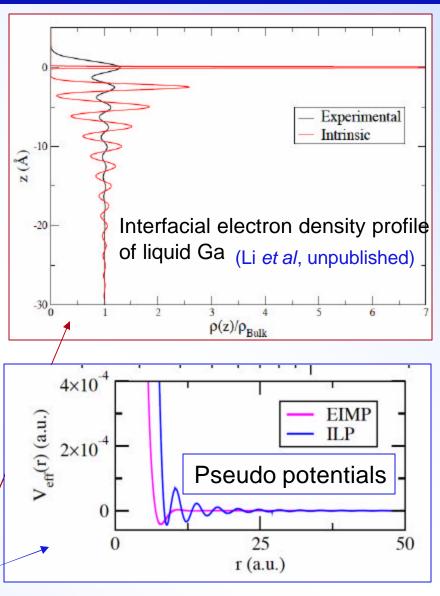


and/or

Interfacial Mixing?

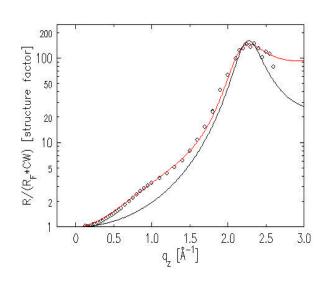


- Preliminary analysis consistent with <u>capillary waves</u>.
- 2. <u>Interfacial electric field</u> alters molecular organization and elastic properties of interface



Faraday Discussions 129, 23, 2005(Schlossman's group, U of IL at Chicago)

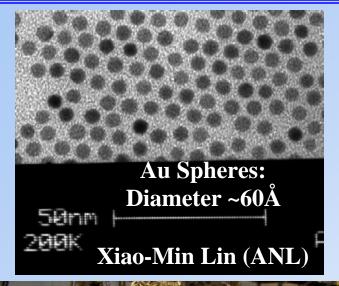
q-dependent surface tension of liquid gallium at 35°C

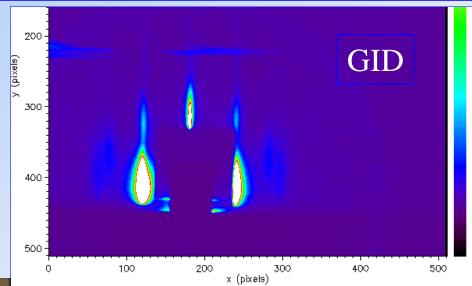


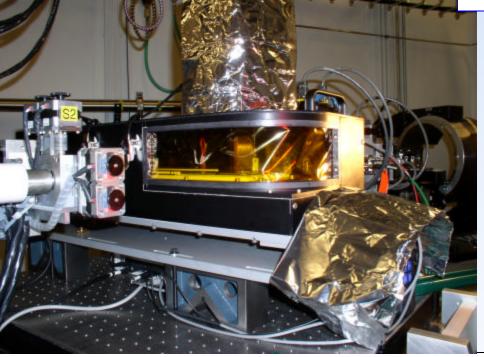

Comparison of the normalized q-dependent surface tension of Ga determined experimentally with that calculated using the Mecke-Dietrich formalism (PRE, 1999) with a stratified intrinsic interfacial density profile and several model potentials.

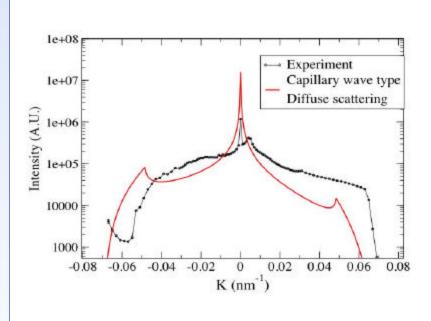
Rice's group (U of Chicago), PRL, 92,136102 (2004)

Anomalous Layering at Liquid Sn Surface




- X-ray specular reflectivity is a direct measure of a surface structure factor
- A peak in surface structure factor is associated with a surface-induced atomic layering, found in a number of metallic liquids
- A deviation from the classic layering behavior at low wave vectors found for liquid Sn is an unexpected feature, consistent with a densely packed atomic layer at the surface

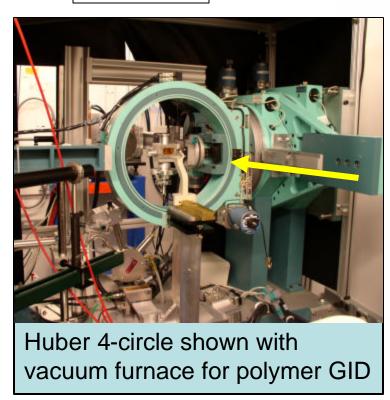

Shpyrko et al, *PRB* 70 224106 (Prof. Peter Pershan's group, Harvard)


A monolayer of Au nanospheres on the surface of water

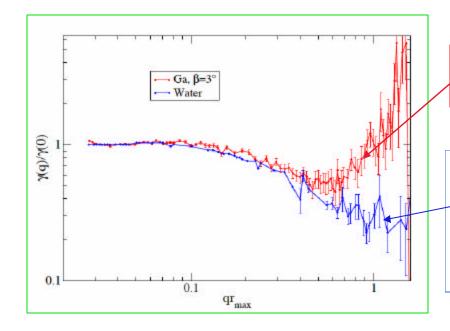
B. Lin, M. Meron, D. Schultz, J. Gebhardt, and J. Viccaro (ChemMatCARS)

The End

Solid Surface Scattering at 15-ID



Emphasis on Soft Condensed Matter Films


- Polymer
- Biological
- •Solid/liquid

Techniques

XR, XDS, GID, GISAXS, XSW

Polyethylene Thin Film GID This supplies the second of t

Normalized *q*-dependent surface tension of <u>liquid Ga</u> from x-ray surface diffuse scattering intensity

Normalized q-dependent surface tension of <u>water</u> from x-ray surface diffuse scattering intensity, <u>agreed well with</u> Mecke-Dietrich's H(q) using pair-potential and density profile appropriate for water surface (Fradin et al, Nature 2000)